Данная статья является первой частью серии статей под названием "Решение матриц". Каждая часть сопровождается теорией, примерами и подробным описанием.
Если Вам нужно привести матрицу к треугольному (ступенчатому) виду, воспользуйтесь нашим онлайн калькулятором.
Эту задачу приходится решать очень часто, так как она используется во многих операциях над матрицами (решение систем линейных алгебраических уравнений (СЛАУ), вычисление определителя матрицы).
Что бы привести матрицу к треугольному виду, нужно воспользоваться методом Гаусса, который является простым в использовании и позволяет быстро прийти к конечному результату. Метод заключается в том чтобы исходную матрицу, путём элементарных преобразований привести к треугольному (ступенчатому) виду.
Для приведения матрицы к треугольному виду, необходимо обнулить все элементы стоящие ниже главной диагонали.
Пусть дана матрица
.
Первым действием обнуляем первые элементы 2,3,...,n строки, для этого вычтем из этих строк первую строку умноженную на
соответственно,
получим
,
где
.
Теперь вычтем из 3,4...,n строки вторую строку умноженную на
,
этим действием обнуляем вторые элементы этих строк, соответственно, получаем
,
где bij элементы получившиеся в результате этих преобразований. И так далее, пока не получим вид
,
где bij это элементы получившиеся в результате элементарных преобразований, это и есть матрица треугольного вида.
Если Вам не понятен какой-либо шаг или у Вас есть вопросы по приведению матрицы к треугольному (ступенчатому) виду, вы всегда можете оставить свой комментарий ниже или решить её воспользовавшись нашим онлайн калькулятором.
Свои вопросы по данной статье, Вы всегда можете задать в комментариях.